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Abstract: In this paper we derive the semiparametric efficiency bound in time

series models of conditional quantiles under a sole strong mixing assumption.

We moreover provide an expression of Stein’s (1956) least favorable parametric

submodel. Our approach can be summarized as follows: first, we characterize the

class of M–estimators that are consistent for the the conditional quantile param-

eter. We show that these estimators are asymptotically normal, and determine

the minimum of their asymptotic covariance matrices. Second, we construct a

fully parametric submodel that satisfies the conditional quantile restriction and

contains the data generating process. Finally, we show that this submodel is the

least favorable, i.e. the asymptotic covariance matrix of its maximum likelihood

estimator is equal to the above minimum.

1. Introduction

In his seminal paper, Stein (1956) proposed a general method for obtaining semipara-

metric efficiency bounds that has been further studied by Begun, Hall, Huang, and

Wellner (1983) and Bickel, Klaassen, Ritov, and Wellner (1993). In particular, the
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latter have developed an information calculus framework based on local asymptotic

normality (LAN) and regularity of parameters of interest to derive Hajek-LeCam style

convolution theorems for regular estimators. Most of the literature has focused on in-

dependent and identically distributed (iid) data as the study of sufficient conditions

to satisfy the convolution theorem hypotheses has been largely successful in this set-

ting. While dropping the iid assumption does not alter the validity of the convolution

theorems, generalizing the sufficient conditions to satisfy them is still a challenge in

time series contexts (Bickel and Kwon, 2001; Bickel, Klaassen, Ritov, and Wellner,

2005; Wellner, Klaassen, and Ritov, 2006).

This explains why the study of the non-iid case has first focused on time-series

models in which some finitely parameterized transformation of the data leads back to

the iid case. See e.g. Kreiss (1987) and Drost, Klaassen, and Werker (1997) who have

derived general conditions under which LAN conditions hold (see also Hallin, Ver-

mandeley, and Werker (2004)). Hence, the construction of semiparametric efficiency

bounds is possible in such models, where the iid assumption of the innovation also al-

lows for adaptive estimation in the sense of Bickel (1982). For example, this approach

could be used to obtain the semiparametric efficiency bound in the following linear

quantile regression model with ARCH errors (Koenker and Zhao, 1996):

Yt = θ′Wt + (1 + γ|Ut−1|)Ut, (1)

where Wt ≡ (1, Yt−1)
′, the process {(Yt, W

′
t)
′} is strong mixing, the error sequence

{Ut} is independent of {Wt} and iid with some absolutely continuous distribution

function H0(·) (continuous density h0(·)) such that H−1
0 (α) = 0 for α ∈ (0, 1). Here,

θ is the parameter of interest and γ and h0 are two nuisance parameters where the

latter is infinite dimensional.

More generally, consideration of information bounds and efficient estimation has
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been extended to nonparametric stationary Markov chains, where the parameter of

interest satisfies a conditional moment restriction. See e.g. Greenwood, Müller, and

Wefelmeyer (2004) for a current state of the art in this area. The time series model we

study in this paper more closely falls in this category as the parameter of interest θ

satisfies a conditional quantile restriction, though we do not restrict the data to be a

stationary Markov Chain requiring it to be strong mixing only. In (1), this occurs when

the sequence of errors {Ut} is itself strong mixing. In this case, there exists no finitely

parameterized transformation that would bring us back to the iid case. In other words,

the time-dependence of the sequence {Ut} introduces an additional nonparametric

component that complicates the derivation of the semiparametric efficiency bound

for θ. In the words of Bickel, Klaassen, Ritov, and Wellner (2005), “none of these

[LAN results] have been extended to honestly semiparametric contexts.” Moreover,

as the results by Pfanzagl (1976) and Fabian and Hannan (1982) indicate, adaptive

estimation is not possible here thereby rendering nontrivial the derivation of the

semiparametric efficiency bound.

In this paper, we use Stein’s (1956) original definition and construct a “least favor-

able” submodel to derive the semiparametric efficiency bound in time-series models

subject to a parametric conditional quantile restriction. To do so, we first charac-

terize the class of M– (or extremal) estimators (Huber (1967)) that are consistent

for the parameters θ of the conditional quantile. We show that these estimators are

asymptotically normal under strong mixing, and we determine the minimum of their

asymptotic covariance matrices. These results are of interest by themselves. In a sec-

ond step we construct a fully parametric model that satisfies the conditional quantile

restriction and contains the data generating process. We study the asymptotic prop-

erties of the maximum likelihood estimator (MLE) of such a parametric submodel.
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In particular, we show that the asymptotic covariance matrix of this MLE, which

is the inverse of the Fisher’s information matrix, happens to be equal to the above

minimum. Stein’s (1956) argument then implies that the latter asymptotic covari-

ance matrix is the semiparametric efficiency bound for θ, while the constructed fully

parametric submodel is a least favorable one.

As is known, least favorable models do not always exist. Examples when they do are

the symmetric location model and the linear regression model where adaptive estima-

tion is possible, and more recently, the normal bivariate copula model (Klaassen and

Wellner (1997)), where adaptive estimation is not possible. When a least favorable

model of same dimensionality as the parameter of interest is available, recent results

by Murphy and der Vaart (2000) on profile likehoods (Severini and Wong (1992)) can

be used to develop likelihood ratio type tests and confidence intervals in semipara-

metric models. Though our least favorable submodel has the same dimensionality as

the parameter of interest, the absence of a convenient partitioned or variation-free

parameterization (θ, η) with θ defined through a conditional moment restriction and

η infinitely dimensional complicates the application of Klaassen and Wellner (1997)

results.

Of independent interest, Komunjer (2005) has characterized the class of quasi MLEs

(QMLEs) that are consistent for the parameter θ in the conditional quantile restric-

tion. Such a class is seen to be strictly included in the class of consistent M–estimators.

In general, one can think of the class of GMM estimators as being the widest one.

Then comes the class of M–estimators which can be viewed as just-identified GMM

estimators. Finally comes the class of QMLEs which is the class of M–estimators

whose objective functions satisfy an additional “integrability” condition and can thus

be interpreted as quasi-likelihoods.
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In models for conditional quantiles, efficient estimators are contained in the class of

M–estimators. Hence, at least from a semiparametric efficiency viewpoint, no advan-

tage is gained by considering GMM over M–estimators. Interestingly, our results show

that the QMLE class is not sufficiently large to attain the semiparametric efficiency

bound. On the other hand, as the latter is the minimum of the asymptotic covariance

matrices of consistent M–estimators, a natural question is whether the bound can

be attained. In Komunjer and Vuong (2007) under additional assumptions including

smoothness ones, we propose a feasible M–type estimator that is semiparametrically

efficient i.e. that achieves the semiparametric efficiency bound.

The remainder of the paper is as follows. In Section 2 we define our notation and

introduce models for conditional quantiles. Section 3 characterizes the class of M–

estimators that are consistent for the parameters of such models, provided they are

correctly specified. In the same section we show that such estimators are also asymp-

totically normally distributed with an asymptotic covariance matrix whose expression

depends on the form of the M–objective function being minimized. We then derive the

minimum bound of the above family of matrices. Section 4 discusses Stein’s (1956)

definition of parametric submodels and proposes a parametric submodel of the condi-

tional quantile semiparametric model. In the same section, we show that this model

is the least favorable one thereby providing the semiparametric efficiency bound. We

relegate all the proofs to the end of the paper.

2. Setup

2.1. Notation and Definitions. Consider a stochastic sequence (a time series)

Z ≡ {Zt, t ∈ N} defined on a probability space (Ω,B, P ) where Z : Ω → R(n+1)N

and R(n+1)N is the product space generated by taking a copy of Rn+1 for each integer,
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i.e. R(n+1)N ≡ ×∞t=1Rn+1, n ∈ N. To simplify, we assume that for any T > 1, the

joint distribution of Z T ≡ (Z1, . . . , ZT ) has a positive continuous density fZ T
(·) on

R(n+1)T , so that conditional densities are everywhere defined.

We partition the random vector Zt as Zt = (Yt, X
′
t)
′ and are interested in the

distribution of its endogenous (scalar) component, denoted Yt, conditional on its own

lags as well as the past and present values of the exogenous n-vector Xt. Specifically,

we consider the family of subfields {Wt, t ∈ N} where Wt ≡ σ(Z t−1, Xt) is the

information set generated by the sequence of conditioning vectors up to time t. For

every t, 1 6 t 6 T, T > 1, we let F 0
t (·) denote the conditional distribution function

of Yt conditional upon Wt, i.e. F 0
t (y) ≡ P (Yt 6 yt|Wt) for every y ∈ R with f 0

t (·) its

conditional probability density. Letting X T ≡ (X1, . . . , XT ), and using the fact that

Xt’s are exogenous (so that their distribution is independent of the lagged values of

Yt), we then have that fZ T
(z T ) = [

∏T
t=1 f 0

t (yt) ]fX T
(x T ), where lowercase letters are

used to denote the realizations of the corresponding random variables.

Throughout the paper we assume that for every t, 1 6 t 6 T, T > 1, F 0
t (·) is

unknown and that it belongs to F which is the set of all absolutely continuous distri-

bution functions on R with bounded density that is continuously differentiable, and

whose derivative is bounded as well. In other words, there exist constants M0, M1 > 0

such that supt>1 supy∈R f 0
t (y) 6 M0 < ∞ and supt>1 supy∈R |df0

t (y)/dy| 6 M1 < ∞.

The notation we use is standard: If V is a real n-vector, V ≡ (V1, . . . , Vn)′, then |V |

denotes the L2-norm of V , i.e. |V |2 ≡ V ′V =
∑n

i=1 V 2
i . If M is a real n × n-matrix,

M ≡ (Mij)16i,j6n, then |M | denotes the L∞-norm of M , i.e. |M | ≡ max16i,j6n |Mij|,

and M+ denotes a generalized inverse of M . If A is a positive definite n× n-matrix,

then A−1/2 = P where P is invertible such that PAP ′ = Id where Id denotes the

n× n-identity matrix.
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Let f : E → R, V 7→ f(V ), with E ⊆ Rn and V = (V1, ..., Vn)′, be continuously

differentiable to order R > 1 on E. Let r ≡ (r1, ..., rn) ∈ Nn: if |r| 6 R then Drf(V ) ≡

∂|r|f(V )/∂V r1
1 ...∂V rn

n where |r| ≡ r1+...+rn represents the order of derivation. If r = 0

then D0f(V ) = f(V ). Further, let r! ≡ r1!...rn! and V r ≡ V r1
1 ...V rn

n . Then, for any

(V, V0) ∈ E2 the (familiar) expression in a Taylor expansion of order R can be written

as
∑

|r|6R
Drf(V0)

r!
(V −V0)

r ≡
∑R

k=0

∑
j1,...,jk∈(1,...,n)k

1
k!

∂kf(V0)
∂Vj1

...∂Vjk
(Vj1−V0j1)...(Vjk

−V0jk
),

for 1 6 l 6 R. For example, when R = 1, we have
∑

|r|61 Drf(V0)(V − V0)
r =

f(V0) +
∑n

i=1[∂f(V0)/∂Vi](Vi − V0i) (Schwartz, 1997). When R > 2, we let ∇V f(V )

denote the gradient of f , ∇V f(V ) ≡ (∂f(V )/∂Vi, ..., ∂f(V )/∂Vn)′, and use ∆V V f(V )

to denote its Hessian matrix, ∆V V f(V ) ≡ (∂2f(V )/∂Vi∂Vj)16i,j6n.

Finally, the function 1I : R → [0, 1] denotes the Heaviside (or indicator) function:

for any x ∈ R, we have 1I(x) = 0 if x 6 0, and 1I(x) = 1 if x > 0 (Bracewell,

2000). The Heaviside function is the indefinite integral of the Dirac delta function

δ : R → R, with 1I(x) =
∫ x

a
dδ, where a is an arbitrary (possibly infinite) negative

constant, a 6 0.

2.2. Models for conditional quantiles. In this paper we do not consider the

conditional distribution F 0
t (·) in its entirety but rather focus on a particular condi-

tional quantile of Yt. For a given probability α ∈ (0, 1), we denote by M a model for

the conditional α-quantile of Yt, M ≡ {qα(Wt, θ)}, parametrized by θ in Θ, where

Θ is a compact subset of Rk with non-empty interior, Θ̊ 6= ∅, and in which Wt is a

random m-vector, Wt ∈ Rm, that is Wt-measurable. In what follows, we restrict our

attention to conditional quantile models M in which the set of following conditions

is satisfied:

(A1) (i) the model M is identified on Θ, i.e. for any (θ1, θ2) ∈ Θ2 we have: qα(Wt, θ1)

= qα(Wt, θ2), a.s. − P , for every t, 1 6 t 6 T, T > 1, if and only if θ1 = θ2; (ii)
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for every t, 1 6 t 6 T, T > 1, the function qα(Wt, ·) : Θ → R is twice continu-

ously differentiable on Θ a.s. − P ; (iii) for every t, 1 6 t 6 T, T > 1, the matrix

∇θqα(Wt, θ)∇θqα(Wt, θ)
′ is of full rank a.s.− P for every θ ∈ Θ.

The set of conditions in (A1) is fairly standard and generally verified for a wide

variety of conditional quantile models. In what follows, for any given M we shall

denote by Q the range of qα, i.e. Q ≡ {q ∈ R : q = qα(w, θ), θ ∈ Θ, w ∈ Rm}, Q ⊆ R.

One crucial assumption that we make in our analysis, and which is of different

nature than the conditions above, is that the model M is correctly specified, so that

there exists some true parameter value θ0 such that F 0
t (qα(Wt, θ0)) = α, for every t,

1 6 t 6 T, T > 1. In other words, we assume the following:

(A2) given α ∈ (0, 1), there exists θ0 ∈ Θ̊ such that E[1I(qα(Wt, θ0) − Yt)|Wt] =

α, a.s.− P , for every t, 1 6 t 6 T, T > 1.

In other words, for any t, 1 6 t 6 T, T > 1, the difference between the indicator

variable above and α is assumed to be orthogonal to any Wt-measurable random

variable.

3. Semiparametric estimators for conditional quantiles

In this paper we consider a particular family of semiparametric conditional quantile

estimators known as M– (or extremal) estimators (Huber, 1967). M–estimators for

θ0, denoted θT , are obtained by minimizing criterion functions of the form ΨT (θ) ≡

T−1
∑T

t=1 ϕ(Yt, qα(Wt, θ), ξt) where for every t, 1 6 t 6 T, T > 1, ϕ is a real function of

the variable of interest Yt, the quantile qα(Wt, θ) and a (possibly inifinite-dimensional)

random variable ξt : Ω → Et, i.e. ϕ : R×Q×Et → R. The variable ξt can be thought

of as a shape parameter of the objective function ϕ. We assume the following:
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(A3) (i) for every t, 1 6 t 6 T, T > 1, ξt is Wt-measurable; (ii) for every t,

1 6 t 6 T, T > 1, the function ϕ(·, ·, ·) is twice continuously differentiable a.s. − P

on R×Q× Et with respect to its second argument ( q).

By assumption (A3)(i), the random variable ξt is allowed to depend only on vari-

ables contained in Wt, i.e. ξt is predictable (see e.g. Greenwood, Müller, and We-

felmeyer (2004)). In particular, if we consider objective functions ϕ that depend on

some estimator based on the observations of Yt and Wt up to time T—kernel es-

timators of conditional distributions or densities are examples—then (A3)(i) fails

to hold. The requirement (A3)(ii) allows for objective functions such as |y − q| or

[α − 1I(q − y)](y − q), for example. Note that in those two cases the shape ξt of ϕ

remains constant over time.

An important subfamily of the class of M–estimators defined above, is that of quasi-

maximum likelihood estimators (QMLEs) (White, 1982; Gourieroux, Monfort, and

Trognon, 1984; Komunjer, 2005). If in addition to (A3), we assume that there exists

a real function c : R×Et→ R, (y, ξt) 7→ c(y, ξt) < ∞, independent of q, and such that∫
R exp[c(y, ξt)− ϕ(y, q, ξt)]dy = 1 for all (q, ξt) ∈ Q×Et, then we can let f̃ 0

t (Yt, θ) ≡

exp[c(Yt, ξt)−ϕ(Yt, qα(Wt, θ), ξt)], and f̃ 0
t (·, θ) can be interpreted as a (pseudo) density

of Yt conditional onWt. Hence, any minimum θT of the function ΨT (θ) above, is also a

maximum of the (quasi) log-likelihood function LT (θ). Indeed, we then have LT (θ) =

[
∑T

t=1 f̃ 0
t (Yt, θ)] + ln fX T

(X T ), and only the first term is a function of θ. However,

due to the above “integrability” constraint—that
∫

R exp[c(y, ξt) − ϕ(y, q, ξt)]dy = 1

for all (q, ξt) ∈ Q×Et—the class of QMLEs is included in that of M–estimators. We

shall come back to this issue in our next section in which we focus on M–estimators

for θ0 that are consistent.

3.1. Class of consistent M–estimators. What are necessary conditions for
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the M–estimator θT satisfying (A3), to be consistent for the true conditional quantile

parameter θ0 in (A2)? The key idea behind the answer to this question is fairly simple.

Assume that the process {Zt} and the functions ϕ(·, ·, ξt) are such that θT − θ0
T

p→ 0,

where θ0
T is a unique minimum of E[ΨT (θ)] ≡ T−1

∑T
t=1 E[ϕ(Yt, qα(Wt, θ), ξt)] on Θ̊.

Note that θ0
T is also called the pseudo-true value of the parameter θ. Then a necessary

requirement for consistency of θT is that θ0
T − θ0 → 0 as T becomes large. In what

follows, we restrict our attention to estimators θT such that θ0
T remains constant, i.e.

∀T > 1 we have θ0
T = θ0

∞. Then, the class of M–estimators that are consistent for θ0

is obtained by considering all the functions ϕ(·, ·, ξt) under which θ0
∞ = θ0.

Note that the requirement of having θ0
T = θ0 for all T > 1 is stronger than that

of having θ0
T → θ0 (see White (1994, p.69-70) for a discussion). This implies that

θ0 can be consistently estimated by minimizing objective functions that are different

from the ones derived below, as long as the expected value of this difference converges

uniformly to zero with T . An important example in which the condition θ0
T = θ0 for all

T > 1 fails is when the shape ξt of the objective function ϕ depends on observations

up to time T and is therefore not Wt-measurable.

We now provide a more formal treatment of consistency. A set of sufficient assump-

tions for θT − θ0
∞

p→ 0 is (see Theorem 2.1 in Newey and McFadden, 1994):

(A4) {Zt} and ϕ(·, ·, ξt) are such that: (i) for every t, 1 6 t 6 T, T > 1, and every

θ ∈ Θ, |Drϕ(Yt, qα(Wt, θ), ξt)| 6 mr(Yt, Wt, ξt), a.s. − P , where E[mr(Yt, Wt, ξt)] <

∞, for r = 0, 1, 2; for any T > 1, (ii) E[ΨT (θ)] is uniquely minimized at θ0
∞ ∈ Θ̊,

and (iii) supθ∈Θ |ΨT (θ)− E[ΨT (θ)]| p→ 0.

Note that the above are not primitive conditions for consistency of θT . For ex-

ample, the dominance conditions in (A4)(i) are typically implied by more primi-
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tive assumptions on the existence of different moments of Yt, Wt and ξt. Condi-

tion (A4)(ii) states that θ0
∞ is a minimum of E[ΨT (θ)] and that this minimum is

moreover unique. The first requirement involves more primitive conditions on ∂ϕ/∂q,

∂2ϕ/∂q2 and ∇θqα, which depend on the shape ξt of ϕ and the functional form

of qα. For example, a sufficient set of conditions for θ0
∞ to be a minimum is that

T−1
∑T

t=1 E[∇θϕ(Yt, qα(Wt, θ
0
∞), ξt)] = 0 and T−1

∑T
t=1 E[∆θθϕ(Yt, qα(Wt, θ

0
∞), ξt)] �

0. Finally, the uniform convergence condition (A4)(iii) can be obtained by applying

an appropriate uniform law of large numbers to the sequence {ϕ(Yt, qα(Wt, θ), ξt)}.

Implicit in (A4)(iii) are primitive assumptions on the dependence structure and het-

erogeneity of the process {Zt}, and on the properties of ϕ(Yt, qα(Wt, ·), ξt). A simple

example is one where {Zt} is iid and the functions ϕ(Yt, qα(Wt, ·), ξt) are Lipshitz-L1

a.s.− P on Θ.

The above pseudo-true value θ0
∞ of the parameter θ equals the true value θ0 if and

only if, for any T > 1, θ0 minimizes E[ΨT (θ)]. A necessary and sufficient requirement

for θ0
∞ = θ0 is given in the following theorem.

Theorem 1 (Necessary and sufficient condition for consistency). Assume that

(A1), (A3) and (A4) hold. If the true parameter θ0 satisfies the conditional moment

condition in (A2), then the M-estimator θT is consistent for θ0, i.e. θT − θ0
p→ 0, if

and only if there exist a real function A(·, ·) : R × Et→ R that is twice continuously

differentiable and strictly increasing with respect to its first argument (q or y) a.s.−P

on Q×Et, and a real function B(·, ·) : R×Et→ R, such that ϕ(y, q, ξt) = [α− 1I(q−

y)][A(y, ξt)−A(q, ξt)]+B(y, ξt), a.s.−P on R×Q×Et, for every t, 1 6 t 6 T, T > 1.

In other words, if for any given sample size T > 1 we are interested in consistently

estimating the conditional quantile parameter of a continuously distributed random

variable Yt by using an M–estimator θT , then we must employ an objective function
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ΨT (·) = T−1
∑T

t=1 ϕ(Yt, qα(Wt, ·), ξt) with

ϕ(Yt, qα(Wt, θ), ξt)

= [α− 1I(qα(Wt, θ)− Yt)][A(Yt, ξt)− A(qα(Wt, θ), ξt)] + B(Yt, ξt), (2)

a.s.−P , for every t, 1 6 t 6 T . Using objective functions of this form is also a sufficient

condition for θT to be consistent for the true parameter θ0 of a correctly specified

model for the conditional α-quantile. Note that the real functions A(·, ·) and B(·, ·) in

Theorem 1 need not have the same shape parameter: we can let ξt ≡ (ξ′At, ξ
′
Bt)

′ where

ξAt and ξBt are the shapes of A(·, ξAt) and B(·, ξBt), respectively. For simplicity, we

write A(·, ξt) and B(·, ξt) with the understanding that changing the shape of A(·, ·)

may not affect the shape of B(·, ·) and vice-versa.

Given that we restrict our attention to objective functions in which (A3)(ii) holds,

the function A(·, ξt) in Theorem 1 needs to be twice continuously differentiable a.s.−P

on Q. The continuity and differentiability of A(·, ξt) need not hold on R\Q. The

fact that there are no requirements on A(·, ξt) outside the range of qα(Wt, θ) is not

surprising, given that changing the objective function outside Q does not affect the

values of ∂ϕ/∂q, and therefore has no effect on the optimum of ΨT . The fact that

A(·, ξt) is necessarily strictly increasing a.s. − P on Q, comes from the requirement

(A4)(ii) that θ0
∞ be an interior minimum of E[ΨT (θ)] on Θ. As previously, there are

no requirements on the monotonicity of A(·, ξt) on R\Q. Finally, note that there are

no restrictions on the function B(·, ξt), as expected, since changing it does not affect

the optimum of the objective function ΨT . In what follows we set B(·, ξt) identically

equal to 0, which does not affect any of our results but has the benefit of simplifying

the notation.

Well-known examples of conditional quantile estimators that satisfy Theorem 1

are: (1) Koenker and Bassett’s (1978) unweighted quantile regression estimator for
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which A(y, ξt) = y, for all y ∈ R; (2) Powell’s (1984, 1986) left (right) censored

quantile regression estimator obtained when, for all y ∈ R, A(y, ξt) = max{y, ct}

(A(y, ξt) = min{y, ct}) with an observed censoring point ct; (3) weighted quantile

regression estimator, proposed by Newey and Powell (1990) and Zhao (2001), in which

for all y ∈ R, A(y, ξt) = ωty where ωt is some nonnegative weight, as well as its

censored version for which A(y, ξt) = ωt max{y, ct}. Note that A(·, ξt) = max{·, ct}

satisfies the strict monotonicity requirement a.s. − P on Q because, in the censored

quantile regression case, qα(Wt, θ0) > ct, a.s. − P , as discussed by Powell (1984, p

4-6). The intuition behind this inequality is simple: suppose Yt = ct, a.s. − P for all

t, 1 6 t 6 T, T > 1. Then any value θ0 for which qα(Wt, θ0) 6 ct, a.s. − P for all

t, 1 6 t 6 T, T > 1, is a minimum of E[ΨT (θ)], which in that case equals 0. This

violates the uniqueness assumption (A4)(ii), and hence affects the consistency of θT .

The latter is restored by requiring that qα(Wt, θ0) > ct, a.s. − P for a large enough

portion of the sample (see Assumption R.1 in Powell, 1984). An analogous result

holds for the right censored case.

We now show that the class of objective functions ΨT (θ) leading to consistent

conditional quantile M–estimators is (strictly) larger than that leading to consis-

tent QMLEs. To simplify the comparison, assume that Q = R. As pointed out

previously, the main difference between the two classes of estimators lies in the

“integrability” condition on the (pseudo) conditional densities f̃ 0
t (·, θ) of Yt condi-

tional on Wt. Compare the objective function in Theorem 1 with the family of tick-

exponential (pseudo) densities which give consistent QMLEs for θ0 (Komunjer, 2005):

f̄ 0
t (Yt, θ) ≡ α(1− α)a(Yt, ξt) exp{[1I(qα(Wt, θ)− Yt)− α][A(Yt, ξt)−A(qα(Wt, θ), ξt)]}

with A(·, ξt) twice continuously differentiable and strictly increasing a.s. − P on R,

with derivative a(y, ξt) ≡ ∂A(y, ξt)/∂y.
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For f̄ 0
t (·, θ) to be a probability density on R, we need limy→±∞ A(y, ξt) = ±∞,

for any t, 1 6 t 6 T, T > 1. These limit conditions restrict the possible choice of

functions A(·, ξt) in Theorem 1. They follow directly from the quantile restriction∫ qα(Wt,θ)

−∞ f̄ 0
t (y, θ)dy = α, which is equivalent to (1−α) exp[−(1−α)A(qα(Wt, θ), ξt)]×∫ qα(Wt,θ)

−∞ a(y, ξt) exp[(1− α)A(y, ξt)]dy = 1, so that, upon the change of variable u ≡

A(y, ξt), necessarily A(q, ξt) → −∞ as q → −∞. Combining the above quantile

restriction with the condition
∫

R f̄ 0
t (y, θ)dy = 1 yields the result for the limit in +∞

by a similar reasoning.

For example, consider any distribution function Ft(·) in F having a density ft(·)

that is continuously differentiable a.s.− P , and let

A(y, ξF
t ) ≡ Ft(y), (3)

for any y ∈ R. Note that the parameter ξF
t in the objective function A(·, ξF

t ) in

Equation (3) corresponds to the conditional distribution Ft(·) which is stochastic and

Wt-measurable. Under the assumptions of Theorem 1, the M–estimator θF
T , which

minimizes ΨF
T (θ) ≡ T−1

∑T
t=1 ϕ(Yt, qα(Wt, θ), ξ

F
t ) with

ϕ(Yt, qα(Wt, θ), ξ
F
t ) ≡ [α− 1I(qα(Wt, θ)− Yt)][Ft(Yt)− Ft(qα(Wt, θ))], (4)

is consistent for θ0. However, the corresponding function A(·, ξF
t ) in (3), bounded

between 0 and 1, does not satisfy limy→±∞ A(y, ξt) = ±∞. As a consequence, the

class of consistent QMLEs is strictly smaller than that of consistent M–estimators.

To resume, we have shown that an M–estimator θT that satisfies (A3) is consistent

for θ0 if only if the objective functions ϕ(·, ·, ξt) are of the form given in Theorem 1.

From the functional form of ϕ(·, ·, ξt) in (2), it follows that the asymptotic properties

of θT only depend on the choice of A(·, ξt) since changing B(·, ξt) does not affect the

minimum of ΨT (θ). Before considering a particular class of functions A(·, ξt), which
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makes the asymptotics of θT optimal, we need the asymptotic distribution of the

latter. We derive the asymptotic distribution of θT in the next section.

3.2. Asymptotic Distribution. We start by imposing the following assumptions,

in addition to (A1)-(A3):

(A5) for every t, 1 6 t 6 T, T > 1, the functions A(·, ξt) : R → R in Theorem 1

have bounded first and second derivatives, i.e. there exist constants K > 0 and L > 0

such that 0 < ∂A(q, ξt)/∂q 6 K and |∂2A(q, ξt)/∂q2| 6 L, a.s.− P on Q× Et;

(A6) θ0 is an interior point of Θ;

(A7) the sequence {(Yt, W
′
t)
′} is α-mixing with α of size −r/(r − 2), with r > 2;

(A8) for some ε > 0 (i) sup16t6T,T>1 E[supθ∈Θ |∇θqα(Wt, θ)|2(r+ε)] < ∞, sup16t6T,T>1

E[supθ∈Θ |∆θθqα(Wt, θ)|r+ε] < ∞; (ii) sup16t6T,T>1 E[supθ∈Θ |A(qα(Wt, θ), ξt)|r+ε] <

∞, and sup16t6T,T>1 E[|A(Yt, ξt)|r+ε] < ∞.

In addition to (A2) and (A3), we now require the functions A(·, ξt) to have bounded

first and second derivatives (A5). The boundedness property is used to show that

ϕ(Yt, qα(Wt, ·), ξt) are Lipshitz-L1 on Θ a.s. − P . This implies that any pointwise

convergence in θ becomes uniform on Θ. Note that we can obtain a similar implication

by an alternative argument, if the objective functions ϕ(Yt, qα(Wt, ·), ξt) are convex

in the parameter θ.

The convexity approach has been elegantly used to derive asymptotic normality of

the standard Koenker and Bassett’s (1978) quantile regression estimator by Pollard

(1991), Hjort and Pollard (1993) and Knight (1998), for example. In the case of this

estimator, the functions A(·, ξt) are linear and hence ϕ(Yt, qα(Wt, ·), ξt)’s are convex

in θ, no matter which conditional quantile model qα in (A1) we choose. Recall that

ϕ(Yt, qα(Wt, ·), ξt) is convex in a neighborhood of θ0 if and only if the real function
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s 7−→ [ϕ(Yt, qα(Wt, θ0 + νs), ξt) − ϕ(Yt, qα(Wt, θ0), ξt)]/s is increasing in s ∈ R (ν ∈

Rk). This condition holds for any conditional quantile model M in (A1), only if the

functions A(·, ξt) have zero convexity, i.e. are linear.

Unfortunately, the convexity in θ of the objective functions ϕ(Yt, qα(Wt, ·), ξt) does

not hold for general (nonlinear) A(·, ξt)’s, such as the ones in (4). Therefore, we

cannot rely on the convexity argument in our asymptotic normality proof. We are

forced to abide by the classical approach which, though generally applicable, has the

disadvantage of being more complicated and requires stronger regularity conditions,

such as those in (A5).

Our assumptions on the heterogeneity and dependence structure of the data are,

on the other hand, fairly weak. We allow the sequence {(Yt, W
′
t)
′} to be nonstationary

and our strong mixing (i.e. α-mixing) assumption in (A7) allows for a wide variety

of dependence structures (White, 2001). Assumption (A7) is further accompanied by

a series of moment conditions in (A8) which guarantee that the appropriate law of

large numbers and central limit theorem can be applied.

In the special case corresponding to Koenker and Bassett’s (1978) quantile regres-

sion estimator for linear models qα(Wt, θ) = θ′Wt, the set of moment conditions (A8)

reduces to: sup16t6T,T>1 E[|Wt|2(r+ε)] < ∞ and sup16t6T,T>1 E[|Yt|r+ε] < ∞.

The asymptotic distribution of θT is given in the following theorem.

Theorem 2 (Asymptotic Distribution). Under (A1)-(A3) and (A5)-(A8), we

have (Σ0
T )−1/2∆0

T

√
T (θT − θ0)

d→ N (0, Id), where ∆0
T ≡ 1

T

∑T
t=1 E[a(qα(Wt, θ0), ξt)×

f 0
t (qα(Wt, θ0))∇θqα(Wt, θ0)∇θqα(Wt, θ0)

′], Σ0
T ≡ 1

T

∑T
t=1 α(1 − α)E[a(qα(Wt, θ0), ξt)

2

×∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′], and a(qt, ξt) ≡ ∂A(qt, ξt)/∂qt a.s.− P on Q× Et.

Theorem 2 shows that (A1)-(A3) and (A5)-(A8) are sufficient for the M–estimator

θT to be consistent and asymptotically normally distributed. Note that these assump-
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tions are primitive, unlike (A4). The asymptotic variance of θT has the usual “sand-

wich” form (∆0
T )−1Σ0

T (∆0
T )−1: ∆0

T is the Hessian matrix of the M–objective function

ΨT (θ), i.e. ∆0
T = 1

T

∑T
t=1 E[∆θθϕ(Yt, qα(Wt, θ0), ξt)] with ϕ(·, ·, ·) as in (2); Σ0

T is the

outer product of the gradient of ΨT (θ), i.e. Σ0
T = E[∇θΨT (θ)∇θΨT (θ)′]. The expres-

sion for Σ0
T in Theorem 2 then follows from the fact that {∇θϕ(Yt, qα(Wt, θ0), ξt),Wt}

is a martingale difference sequence, which is itself implied by the correct specification

assumption (A2) and the Wt-measurability of the shape ξt of A(·, ·) in (A3)(i).

In particular, the M–estimator θF
T proposed in (4) satisfies the conditions of Theo-

rem 2, provided the conditional probability densities ft(·) are differentiable a.s.−P on

R with bounded first derivatives, so that |f ′t(y)| 6 L, a.s.−P on R. Moreover, the mo-

ment conditions in (A8) are less stringent for θF
T than for Koenker and Bassett’s (1978)

estimator: they reduce to E[|Wt|2(r+ε)] < ∞, if the conditional quantile model is lin-

ear, for example. The fact that the moment conditions imposed on Yt disappear in the

case of θF
T is simply due to the fact that—any conditional distribution function Ft(·)

being bounded between 0 and 1—we always have E[supθ∈Θ |Ft(qα(Wt, θ))|r+ε] 6 1

and E[|Ft(Yt)|r+ε] 6 1 so that (A8)(ii) is automatically satisfied. This difference is of

particular importance in applications in which we have reason to believe that higher

order moments of Yt—order higher than 2—do not exist. In such applications, it is

unclear what the asymptotic properties of Koenker and Bassett’s (1978) estimator

are. On the other hand, θF
T still converges in distribution at the usual

√
T rate.

3.3. Minimum Asymptotic Variance. Using Theorem 2, we can now rank all

the consistent and asymptotically normal estimators constructed in the previous sec-

tion by their asymptotic variances. Note that this ranking is useful, as we do not

allow M–estimators to be superefficient. Superefficiency is ruled out by our continu-

ity assumptions on f 0
t (·), qα(Wt, ·) in (A1)(ii) and a(·, ξt) in Theorem 1. Typically,
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the asymptotic distribution of superefficient estimators is discontinuous in the true

parameters, and our continuity assumptions rule out this discontinuity.

Using Theorem 2, we have (Σ0,F
T )−1/2∆0,F

T

√
T (θF

T − θ0)
d→ N (0, Id), with ∆0,F

T ≡

T−1
∑T

t=1 E[ft(qα(Wt, θ0))f
0
t (qα(Wt, θ0))∇θqα(Wt, θ0)∇θqα(Wt, θ0)

′], and Σ0,F
T ≡ T−1∑T

t=1 α(1−α)E[ft(qα(Wt, θ0))
2∇θqα(Wt, θ0)∇θqα(Wt, θ0)

′]. Clearly, changing the dis-

tribution function Ft(·) in (3)—hence in (4)—affects the asymptotic covariance ma-

trix of the corresponding M–estimator θF
T , through the density term ft(·) appearing

in the expressions of ∆0,F
T and Σ0,F

T . In particular, this result suggests that appro-

priate choices of Ft(·) in (4) lead to efficiency improvements over Koenker and Bas-

sett’s (1978) conditional quantile estimator.

Specifically, when ft(·) and the true conditional density f 0
t (·) coincide at the true

quantile qα(Wt, θ0), we have Σ0,F
T (∆0,F

T )−1 = α(1−α) Id. In other words, this particular

choice of ft(·) seems to lead to a conditional quantile M–estimator with the minimum

asymptotic covariance matrix. The next theorem makes our heuristic argument more

rigorous.

Theorem 3 (Minimum Asymptotic Variance). Assume that (A1)-(A3) and

(A5)-(A8) hold. Then the set of matrices (∆0
T )−1Σ0

T (∆0
T )−1 has a minimum V 0

T given

by V 0
T ≡ α(1−α){T−1

∑T
t=1 E[f 0

t (qα(Wt, θ0))
2∇θqα(Wt, θ0)∇θqα(Wt, θ0)

′]}−1, attained

by the M-estimator θ∗T of θ0 which minimizes Ψ∗
T (θ) ≡ T−1

∑T
t=1 ϕ(Yt, qα(Wt, θ), ξ

∗
t )

where ϕ(y, q, ξ∗t ) = [α− 1I(q − y)][F 0
t (y)− F 0

t (q)], a.s.− P , on R×Q×Et, for every

t, 1 6 t 6 T, T > 1.

Theorem 3 shows two important results. Firstly, the matrix V 0
T is the lower bound

of the set of asymptotic variances of all the consistent and asymptotically normal

M–estimators of θ0 that satisfy (A3): i.e. for any ξt and A(·, ξt) in Theorem 1, the

difference between the corresponding asymptotic covariance matrix (∆0
T )−1Σ0

T (∆0
T )−1
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and V 0
T is always positive semidefinite. Secondly, Theorem 3 shows that this lower

bound is attained, i.e. that there exists an optimal M–estimator θ∗T whose asymptotic

covariance matrix equals V 0
T . As a result, V 0

T is the minimum asymptotic variance

matrix of the class of M–estimators considered here.

The optimal M–estimator is obtained by minimizing the objective function Ψ∗
T (θ) =

T−1
∑T

t=1 ϕ(Yt, qα(Wt, θ), ξ
∗
t ), in which

ϕ(Yt, qα(Wt, θ), ξ
∗
t ) = [α− 1I(qα(Wt, θ)− Yt)][F

0
t (Yt)− F 0

t (qα(Wt, θ))], (5)

a.s. − P , for every t, 1 6 t 6 T, T > 1. In particular, the shape ξ∗t of the optimal

objective function in (5) is that of the true conditional distribution F 0
t (·), which

is stochastic and Wt -measurable as required by (A3)(i). Even though the optimal

M–estimator θ∗T satisfies all the assumptions in (A3), note that its computation is

not feasible, as the true conditional distribution F 0
t (·) is not known. Finally, it is

worth pointing out that the optimal M–estimator θ∗T is not a member of the QMLEs

whose limit restrictions on A(·, ξF
t ) exclude the possibility of choosing A(·, ξF

t ) to be

a distribution function.

What Theorem 3 does not show is whether V 0
T is also the semiparametric efficiency

bound for θ0, in addition to being the minimum of the set of asymptotic covari-

ance matrices of consistent and asymptotically normal M–estimators. We provide an

answer to this question in the next section.

4. Parametric estimators for conditional quantiles

The starting point of the previous section was the correct specification assumption

(A2): it defined a conditional moment restriction which identified the conditional

quantile parameter θ0. The question which we now pose is: what fully parametric



20 Komunjer and Vuong

estimators of θ0 can we construct that satisfy the conditional quantile restriction in

(A2)?

4.1. Stein’s (1956) approach: an example. Stein’s (1956) original concern was

the possibility of adaptive estimation: can we estimate the parameter θ0 in the condi-

tional quantile restriction (A2) as precisely as if we knew the set of true conditional

densities f 0 ≡ {f 0
t (·), 1 6 t 6 T, T > 1}, up to some finite dimensional parameter?

We illustrate it using the example given in the Introduction.

Recall that the model in (1) is pure time–series: there are no exogenous variables

Xt so Zt ≡ Yt. The conditioning set is Wt ≡ σ(Y t−1) where Y t−1 ≡ (Y1, ..., Yt−1),

and the conditional quantile of Yt is assumed to be linear θ′Wt with Wt ≡ (1, Yt−1)
′.

4.1.1. Case 1: iid with finite dimensional nuisance parameter. Assume that Ut’s are

iid with know distribution function H0(·) (and density h0(·)) such that H−1
0 (α) = 0.

The conditional density of Yt in the linear quantile regression model (1) then equals

f 0
t (y) = (1 + γ0|Ut−1|)−1h0([1 + γ0|Ut−1|]−1[y− θ′0Wt]), and its conditional α-quantile

is given by θ′0Wt, where θ0 and γ0 denote the true values of the parameters θ ∈ Θ ⊆

Rk, k = 2 and γ ∈ Γ ⊆ R+.

Here, the true set of conditional densities f 0 belongs to the parametric family P ,

P ≡ {f(η), η ∈ Π} with f(η) ≡ {ft(·, η) : R → R+
∗ , 1 6 t 6 T, T > 1}, indexed by a

finite-dimensional parameter η ∈ Π ⊆ Rp: η ≡ (θ′, γ)′ ∈ Π ≡ Θ × Γ and p ≡ k + 1.

The members f(η) of P are ft(y, η) = (1 + γ|Ut−1|)−1h0([1 + γ|Ut−1|]−1[y− θ′Vt]), for

all t, 1 6 t 6 T, T > 1. In this situation, the parameter of interest θ has a lower

dimensionality than η: dim θ = k and dim η = p = k +1. We can write θ = θ(η), with

θ : Π → Θ being some continuously differentiable function, and interpret the rest of

η as a nuisance parameter (Stein, 1956; Bickel, 1982).

Let η0 index the true set of conditional densities of Yt, i.e. f(η0) = f 0, so that
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the true value of interest θ0 is now written as θ0 = θ(η0) where η0 ≡ (θ′0, γ0)
′.

The above parametric model f(η) is regular (Bickel, 1982; Begun, Hall, Huang, and

Wellner, 1983), all the conditional densities ft(·, η0) satisfy the conditional quantile

restriction (A2) and are continuously differentiable on R, and ft(Yt, ·) is continuously

differentiable on Π a.s. − P . The true value θ0 of θ can be estimated by using a

maximum likelihood approach. Given T > 1, denote by LT (η) ≡ ln fY T
(Y T ) the log-

likelihood function. Then LT (η) =
∑T

t=1 ln ft(Yt, η). Also, let IT (η) denote the Fisher

information matrix of the parametric model P , IT (η) ≡ T−1E[∇ηLT (η)∇ηLT (η)′].

Then, a regular estimator θ̃T of θ0 is efficient if and only if (C0
T )−1/2

√
T (θ̃T − θ0)

d→

N (0, Id), with C0
T ≡ ∇ηθ(η0)(IT (η0))

+∇ηθ(η0)
′ (Bickel (1982)). In the special case

where the sequence {(Yt, W
′
t)
′} is iid, several authors have derived necessary and

sufficient conditions for the MLE to be efficient.

4.1.2. Case 2: iid with infinite dimensional nuisance parameter. Now consider a more

realistic situation in which the true density of Ut in (1) is entirely unknown. Instead, f 0

are only known to belong to a class S which contains all parametric families such as P .

Unlike in P , the sets of densities in S are indexed by an additional infinite dimensional

parameter. In the case of our model (1) this infinite dimensional parameter is the

unknown probability density h0(·) of the error term Ut. The density h0(·) could be

any probability density in a set H—set of all families h of probability densities on R,

which satisfy H−1(α) = 0.

The set S is the union of all parametric sub-families Ph ≡ {fhτ (η), η ∈ Π} obtained

when h is a smooth mapping h : Υ → H which associates a density hτ (·) ≡ h(·, τ)

in H to a finite dimensional parameter τ ∈ Υ ⊆ Rr with h0(·) = h(·, τ 0), τ 0 ∈ Υ.

For any given h, the parametric submodel fhτ (η) is defined as fhτ (η) ≡ {fhτ t(·, η) :

R → R+
∗ , 1 6 t 6 T, T > 1}. In addition, for any τ ∈ Υ, the conditional densi-
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ties fhτ t(·, η0) satisfy the conditional quantile restriction (A2), are continuously dif-

ferentiable on R, and such that fhτ t(Yt, ·) are continuously differentiable a.s. − P

on Π. As previously, consider the log-likelihood function under Ph, LhT (η, τ) =∑T
t=1 ln fhτ t(Yt, η), let IhT (η, τ) ≡ T−1E[∇(η′,τ ′)′LhT (η, τ)∇(η′,τ ′)′LhT (η, τ)′] be the

corresponding Fisher information matrix, and assume that the standard regularity

conditions (Bickel, 1982; Begun, Hall, Huang, and Wellner, 1983) are satisfied. In

particular, the matrix IhT (η0, τ 0) is such that its k × k upper left corner C0
hT ≡

∇(η′,τ ′)′θ(η0)
′(IhT (η0, τ 0))

+∇(η′,τ ′)′θ(η0) is nonsingular. Then, following Stein (1956),

the semiparametric efficiency bound for the conditional quantile parameter θ0 is de-

fined as the supremum of C0
hT over those h. If such a bound is attained by a particular

family h∗, then P∗ ≡ Ph∗ is called the least favorable parametric submodel.

4.1.3. Case 3: non-iid with infinite dimensional nuisance parameter. Finally, con-

sider the case in which the errors Ut are no longer iid, and let h 0
T denote the joint

density of U T ≡ (U1, ..., UT ), for T > 1. In the two previous cases h 0
T was uniquely

determined by the marginal density h0 of Ut; now, h 0
T contains an additional non-

parametric component which is the time-dependence across different terms in the

error sequence {Ut}. Still assuming the independence of {Ut} and {Wt}, we have

that P (Yt 6 θ′0Wt|Wt) = P ((1 + γ0|Ut−1|)Ut 6 0|Wt) = P (Ut 6 0) where the

last equality uses the fact that γ0 ∈ R+. Hence, irrespective of the time-dependence

structure across different Ut’s, the conditional quantile of Yt still equals θ′0Wt pro-

vided P (Ut 6 0) = α. We therefore assume that h 0
T belongs to the set HT of all joint

probability densities on RT whose marginals have zero α-quantile.

Similar to previously, we let S be the union of all parametric sub-families Ph T
≡

{fh Tτ
(η), η ∈ Π} obtained when h T is a smooth mapping h T : Υ → HT which as-

sociates a joint probability density h Tτ (·) ≡ h T (·, τ) to τ ∈ Υ ⊆ Rr, with h 0
T =
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h T (·, τ 0) for some τ 0 ∈ Υ. The parameter τ now parameterizes all the marginal

densities of Ut’s as well as their dependence. For any given h T , the parametric sub-

model fh Tτ
(η) is defined as fh Tτ

(η) ≡ {fh Tτ t(·, η) : R → R+
∗ , 1 6 t 6 T, T > 1}

with fh Tτ t(Yt, ·) continuously differentiable a.s. − P on Π, fh T t(·, η0) continuously

differentiable on R, and such that the conditional quantile restriction (A2) is sat-

isfied. We denote by Ih T T (η, τ) ≡ T−1E[∇(η′,τ ′)′Lh T T (η, τ)∇(η′,τ ′)′Lh T T (η, τ)′] and

Lh T T (η, τ) =
∑T

t=1 ln fh Tτ t(Yt, η) the Fisher information matrix and the log-likelihood

function of the parametric submodel Ph T
, respectively. Provided, again, the regularity

of the model and nonsingularity of C0
h T T ≡ ∇(η′,τ ′)′θ(η0)

′(Ih T T (η0, τ 0))
+∇(η′,τ ′)′θ(η0),

we can apply Stein’s (1956) definition of the semiparametric efficiency bound for θ0

to be the supremum of C0
h T T over the mappings h T . Like in the previous case, if this

supremum is attained by a particular family h ∗
T , then P∗ ≡ Ph ∗

T
is called the least

favorable parametric submodel.

4.2. Parametric Submodel for the Conditional Quantile Restriction. We

now go back to our general setup in which the conditioning set Wt not only contains

lagged Yt’s but also present and past values of the exogenous random n-vector Xt.

The conditional quantile restriction in (A2) is equivalent to the following model:

Yt = qα(θ0, Wt) + εt, (6)

in which E[1I(εt)|Wt] + α = 0, a.s.− P , for any t, 1 6 t 6 T, T > 1. The dependence

assumption in (A7) implies that {(W ′
t , εt)

′} is strong mixing. The model (6) contains

our example (1) as a special case: ε = (1 + γ0|Ut−1|)Ut.

We now construct a parametric submodel of the conditional quantile model (6)

by following the same steps as in the previous section. Recall that the log-likelihood

function then equals [
∑T

t=1 ln f 0
t (yt) ]+ ln fX T

(x T ). In other words, the log-likelihood

function is the sum of two terms: the “conditional” log-likelihood of the Yt’s and the
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log-likelihood of the Xt’s. Since the latter are exogenous, their log-likelihood does not

depend on any parameters that enter the conditional distribution of the Yt’s. Hence,

the analysis in our previous section still applies provided we replace the log-likelihood

function with the “conditional” log-likelihood function. The parameter η now reduces

to θ; the parameter τ used to parameterize the joint densities is set to be θ itself.

Given M and the set of true conditional densities f 0 ≡ {f 0
t , 1 6 t 6 T, T >

1}, consider the parametric submodel P∗ ≡ {f ∗(θ), θ ∈ Θ} parameterized by the

conditional quantile parameter θ in which f ∗(θ) ≡ {f ∗t (·, θ) : R → R+
∗ , 1 6 t 6

T, T > 1} with

f ∗t (y, θ) ≡ f 0
t (y)×

α(1− α)λ(θ) exp{λ(θ)[F 0
t (y)− F 0

t (qα(Wt, θ))][1I(qα(Wt, θ)− y)− α]}
1− exp{λ(θ)[1− F 0

t (qα(Wt, θ))− 1I(qα(Wt, θ)− y)][1I(qα(Wt, θ)− y)− α]}
, (7)

for all y ∈ R, where λ(θ) ≡ Λ(θ − θ0) and Λ : Rk → R is at least twice continuously

differentiable on Rk with Λ(·) > 0 on Rk\{0}, Λ(0) = 0, ∇θΛ(0) = 0, ∆θθΛ(0)

nonsingular and |∆θθΛ(·)| < ∞ in a neighborhood of 0.

The following theorem shows that P∗ is a parametric submodel in S, i.e. that:

(i) for any t, 1 6 t 6 T, T > 1, f ∗t (·, θ) is a probability density for all θ ∈ Θ; (ii)

for any t, 1 6 t 6 T, T > 1, f ∗t (·, θ) satisfies the conditional quantile restriction

Eθ[1I(qα(Wt, θ)− Yt)− α|Wt] = 0, a.s.− P , for all θ ∈ Θ, where Eθ(·|Wt) denotes the

conditional expectation under the density f ∗t (·, θ) for Yt given Wt; and (iii) that P∗

contains the true data generating process f 0 ∈ P∗.

Theorem 4 (Parametric Submodel). Under (A1)(ii) and (A2), the parametric

submodel P∗ defined by (7) is a submodel of S.

The analytic expression of the parametric submodel presented in Theorem 4 is

new. In particula, the density f ∗t (·, θ) is not of the ‘tick-exponential’ form derived by
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Fig 1. Case α = .5, qα(Wt, θ) = θ and f0
t (y) = exp(−2|y|)

Komunjer (2005): it depends on the true density f 0
t (·) as well as the true value θ0

and contains terms such as λ(θ). Note that a simple function Λ(·) which satisfies the

conditions of Theorem 4 is Λ(x) = x′x.

In the parametric submodel P∗, θ parameterizes both the conditional quantile

model M and the shape of f ∗t (·, θ)—in other words, the shape of f ∗t (·, θ) is now

determined by f 0
t (·) and θ (see Figure 1 for a purely location model of a conditional

median when the true density is double exponential). In particular, the density f ∗t (·, θ)

is discontinuous for all values of θ different from θ0; when θ = θ0 the density f ∗t (·, θ0)

equals the true density f 0
t (y) which is continuous.

Because P∗ is a parametric submodel of the set S of all densities satisfying the

conditional quantile restriction in (A2), the semiparametric efficiency bound for θ0 is
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by Stein’s (1956) definition at least as large as the asymptotic variance of the above

MLE θ̃
∗
T . We derive the asymptotic distribution of θ̃

∗
T in the following theorem.

Theorem 5 (Asymptotic Distribution of the MLE). Under (A1)-(A2) and

(A6)-(A8)(i), the asymptotic distribution of the MLE θ̃
∗
T associated with P∗ is given

by (V 0
T )−1/2

√
T (θ̃

∗
T − θ0)

d→ N (0, Id) where V 0
T is as defined in Theorem 3.

Recall from Theorem 3 that V 0
T is the minimum of the asymptotic variances of

the consistent and asymptotically normal M–estimators of θ0. On the other hand,

Theorem 5 shows that there exists a parametric submodel P∗ in which the MLE θ̃
∗
T

of the true parameter θ0 has the same asymptotic covariance matrix V 0
T . It follows,

first, that the parametric model P∗ is the least favorable parametric submodel in S,

and, second, that V 0
T is the semiparametric efficiency bound.

Corollary 6 (Semiparametric Efficiency Bound). Under (A1)-(A2) and (A6)-

(A8)(i), V 0
T = α(1− α){T−1

∑T
t=1 E[f 0

t (qα(Wt, θ0))
2∇θqα(Wt, θ0)∇θqα(Wt, θ0)

′]}−1 is

the semiparametric efficiency bound with efficient score [α(1−α)]−1/2f 0
t (qα(Wt, θ0))×

∇θqα(Wt, θ0).

That V 0
T is the semiparametric efficiency bound has the following interpretation:

when the only thing we know about the model is that it satisfies the conditional quan-

tile restriction (A2), then we cannot estimate the true conditional quantile parameter

θ0 with precision higher than that given by V 0
T . Note that our result uses the mo-

ment restriction (A2) only; we do not make any additional assumptions regarding the

properties of the error term εt in (6) (other than those contained in (A2) and (A7)).

In particular, we allow for {εt} to be dependent and nonidentically distributed.

Perhaps the most important aspect of Corollary 6 is that it relaxes the inde-

pendence assumption. So far as time series data are concerned, two leading sit-
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uations in which the independence is violated come into mind. First is a quan-

tile regression model in which Wt contains serially dependent exogenous variables

or/and lags of Yt, but where the residuals are uncorrelated (though possibly condi-

tionally heteroskedastic). There are some results on this case in Newey and Powell

(1990), under the additional assumption that {(Yt, W
′
t)
′} is iid. The authors derive

the semiparametric efficiency bound for the parameters in the linear quantile regres-

sion qα(Wt, θ) = θ′Wt by allowing for conditional heteroskedasticity (given Wt) in the

error term Yt − θ′Wt. Corollary 6 generalizes Newey and Powell’s (1990) results to

the case where the sequence {(Yt, W
′
t)
′} is weakly dependent and heterogeneous, as

in (A7). Unsurprisingly, when the data is iid and qα linear, the bound V 0
T reduces to

V 0 ≡ α(1− α){E[(f 0
t (qα(Wt, θ0)))

2WtW
′
t ]}−1 derived by Newey and Powell (1990).

In the second time series situation of interest, the residuals themselves are corre-

lated in addition to being heteroskedastic. Note that this situation is not covered in

Newey and Powell’s (1990) model; however, our assumption (A2) does not exclude

the possiblity that {εt} be correlated. So far there exist no results on semiparamet-

ric efficiency bound which cover this dependent case. To the best of our knowledge,

Corollary 6 provides the first result on semiparametric efficiency for nonlinear (and

possibly censored) conditional quantile models when the data is dependent.

5. Proofs

Proof of Theorem 1. First, note that (A3)-(A4) together with the compactness of the

parameter space Θ, are sufficient conditions for θT to be consistent for θ0
∞ ∈ Θ̊ (see,

e.g., Theorem 2.1 in Newey and McFadden, 1994). We now show that θ0
∞ = θ0 for

any T > 1 if and only if ΨT (·) is of the form defined by functions A(·, ·) and B(·, ·)

in Theorem 1. We treat the two implications separately.
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STEP 1 (sufficiency): By (A4)(i),∇θE[ΨT (θ)] = T−1
∑T

t=1 E[∇θϕ(Yt, qα(Wt, θ), ξt)].

From the expression of ϕ(·, ·, ·), twice continuous differentiability of A(·, ξt) a.s.−on

Q for any t, 1 6 t 6 T, T > 1, and (A2) we have E[∇θϕ(Yt, qα(Wt, θ0), ξt)] =

E{∇θqα(Wt, θ0)a(qα(Wt, θ0), ξt)E[1I(qα(Wt, θ0) − Yt) − α|Wt]} = 0, a.s. − P , so that

∇θE[ΨT (θ0)] = 0. Similarly, ∆θθE[ΨT (θ0)] = T−1
∑T

t=1 E[∆θθϕ(Yt, qα(Wt, θ0), ξt)]

where for any t, 1 6 t 6 T, T > 1,

E[∆θθϕ(Yt, qα(Wt, θ0), ξt)]

= E{∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′a(qα(Wt, θ), ξt)E[δ(qα(Wt, θ0)− Yt)|Wt]}

= E[∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))], (8)

where f 0
t (·) is the true probability density function of Yt conditional on Wt. We now

show that ∆θθE[ΨT (θ0)] � 0. By using (8), χ′∆θθE[ΨT (θ0)]χ = 0 for any χ ∈ Rk

only if T−1
∑T

t=1 E[χ′∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′χa(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))] = 0.

Now, note that for any t, 1 6 t 6 T and T > 1,

E[χ′∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′χa(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))]

= E[(χ′∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))] > 0, (9)

for any χ ∈ Rk, since a(qα(Wt, θ0), ξt) > 0, a.s.− P and f 0
t (qα(Wt, θ0)) > 0, a.s.− P .

Taking into account (9) we have that χ′∆θθE[ΨT (θ0)]χ = 0 for any χ ∈ Rk only if

E[(χ′∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))] = 0 for all t, 1 6 t 6 T , T > 1.

Using again the strict positivity of a(·, ξt) and f 0
t (·) this last equality is true only if

χ′∇θqα(Wt, θ0) = 0, a.s. − P , for every t, 1 6 t 6 T , T > 1. This, with (A1)(iii),

implies that χ = 0. From there we conclude that ∆θθE[ΨT (θ0)] � 0 and therefore

θ0 is a minimizer E[ΨT (θ)] on Θ̊. Since by (A4)(ii) this minimizer is unique, we have

that for any T > 1, θ0
∞ = θ0 which completes the sufficiency part of the proof.
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STEP 2 (necessity): Given the differentiability of E[ΨT (θ)] on Θ by (A4)(i), a

necessary requirement for θ0
∞ = θ0 is that the first order condition ∇θE[ΨT (θ0)] = 0

be satisfied, which is equivalent to

T−1
T∑

t=1

E{∇θqα(Wt, θ0)E[∂ϕ
∂q

(Yt, qα(Wt, θ0), ξt)|Wt]} = 0.

Since the above equality needs to hold for any T > 1, any choice of conditional

quantile model M and for any true parameter θ0 ∈ Θ̊, we need to find a necessary

condition for the implication

E[1I(qα(Wt, θ0)− Yt)− α|Wt] = 0, a.s.− P (10)

⇒ E[∂ϕ
∂q

(Yt, qα(Wt, θ0), ξt)|Wt] = 0, a.s.− P,

to hold, for all t, 1 6 t 6 T , T > 1, and all absolutely continuous distribution function

F 0
t in F . We now show that

∂ϕ
∂q

(Yt, qα(Wt, θ0), ξt) = a(qα(Wt, θ0), ξt)[1I(qα(Wt, θ0)− Yt)− α], a.s.− P, (11)

for any θ0 ∈ Θ̊ and any t, 1 6 t 6 T , T > 1, where a(·, ξt) : R → R is strictly positive

a.s. − P on Q, is a necessary condition for (10). Using a generalized Farkas lemma

(Lemma 8.1, p 240, vol 1) in Gourieroux and Monfort (1995), (10) implies there exists

a Wt -measurable random variable at such that

∂ϕ
∂q

(Yt, qα(Wt, θ0), ξt) = at[1I(qα(Wt, θ0)− Yt)− α], a.s.− P.

Since the left-hand side only depends on Yt, qα(Wt, θ0) and ξt, the same must hold

for the right-hand side. Hence, at can only depend on qα(Wt, θ0) and ξt and we can

write at = a(qα(Wt, θ0), ξt); so (11) holds. We now need to show that a(·, ξt) is strictly

positive a.s.−P on Q. A necessary condition for θ0 ∈ Θ̊ to be a minimizer of E[ΨT (θ)]

(in addition to the above first order condition) is that for every χ ∈ Rk the quadratic
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form χ′∆θθE[ΨT (θ0)]χ > 0 (existence of ∆θθE[ΨT (θ)] is ensured by (A4)(i)). Taking

into account (11) and our previous computations leading to (8), we have

χ′∆θθE[ΨT (θ0)]χ = T−1
T∑

t=1

E[(χ′∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))].

Hence, the quadratic form χ′∆θθE[ΨT (θ0)]χ is nonnegative for any T > 1, any con-

ditional quantile model M, any true value θ0 ∈ Θ̊ and any conditional density f 0
t (·),

only if a(qα(Wt, θ0), ξt) > 0, a.s. − P , for all t, 1 6 t 6 T, T > 1. Note that the

uniqueness of the solution θ0 implies that a(q, ξt) > 0, a.s.− P for any q ∈ Q and for

all t, 1 6 t 6 T, T > 1. Using the continuity of ϕ(Yt, ·, ξt) a.s.− P on Q in (A3)(ii),

the necessary condition (11) then integrates into

ϕ(Yt, qα(Wt, θ0), ξt) =

 (1− α)[A(qα(Wt, θ0), ξt)− A(Yt, ξt)], if Yt 6 qα(Wt, θ0),

−α[A(qα(Wt, θ0), ξt)− A(Yt, ξt)], if Yt > qα(Wt, θ0),

+B(Yt, ξt), a.s. − P , where for every t, 1 6 t 6 T, T > 1, A(·, ξt) is an indefinite

integral of a(·, ξt), A(q, ξt) ≡
∫ q

a
a(r, ξt)dr, a ∈ R, and B(·, ξt) : R → R is a real

function. Note that the above equality has to hold for any θ0 ∈ Θ̊ so that for every t,

1 6 t 6 T, T > 1, ϕ(y, q, ξt) = [α − 1I(q − y)][A(y, ξt)− A(q, ξt)] + B(y, ξt), a.s.− P ,

on R×Q× Et.

Proof of Theorem 2. To show that Theorem 2 holds, we first show that under primi-

tive conditions given in (A1)-(A3) and (A5)-(A8), θT is consistent for θ0, i.e. θT−θ0
p→

0. We proceed by checking that all the assumptions for consistency used by Ko-

munjer (2005) in her Theorem 3 hold. Given that her proof of consistency for the

family of tick-exponential QMLEs derived in Theorem 3 does not require any as-

sumptions on the limits in ±∞ of the functions A(·, ξt), it applies directly to the

M–estimator θT defined in (A3). Assumptions A2 and A3 in Komunjer (2005) are

satisfied by imposing our (A6) and (A5), respectively. The α-mixing condition A4 in
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Komunjer (2005) and the assumption that Wt is a function of some finite number

of lags of Zt stated in A0.iv in Komunjer (2005) are used to ensure that {(Yt, W
′
t)
′}

is α-mixing of with α of the same size −r/(r − 2), r > 2. Here, we directly im-

pose the mixing of the sequence {(Yt, W
′
t)
′} in our (A7), which is sufficient for the

proof of Theorem 3 in Komunjer (2005) to go through. Finally, the moment con-

ditions A5 in Komunjer (2005) directly follow from our (A8) and the fact that

E[supθ∈Θ |∇θqα(Wt, θ)|] 6 max{1, E[supθ∈Θ |∇θqα(Wt, θ)|2]} < ∞. Hence we can use

the results of Theorem 3 in Komunjer (2005)—corresponding to the case where the

conditional quantile model is correctly specified (A2)—which proves the consistency

of θT . Similarly, we derive asymptotic normality by using the results of Corollary 5

in Komunjer (2005). The boundedness of the second derivative of A(·, ξt) contained

in assumption A3’ in Komunjer (2005) is directly implied by (A5). The moment con-

dition in assumption A5’ in Komunjer (2005) follows from our (A8). Finally in our

setup we have assumed that the true conditional density f 0
t (·) of Yt is strictly positive

and bounded on R, which verifies assumption A6 in Komunjer (2005). Hence, from

Corollary 5 in Komunjer (2005) we know that
√

T (Σ0
T )−1/2∆0

T (θT − θ0)
d→ N (0, Id)

where ∆0
T and Σ0

T are as defined in Theorem 2.

Proof of Theorem 3. The proof of this theorem is done in two steps: we first show that

V 0
T is the lower bound of the set of asymptotic matrices (∆0

T )−1Σ0
T (∆0

T )−1 obtained

with functions A(·, ξt) satisfying the conditions of Theorem 1. Then, we show that

V 0
T is attained by a particular M–estimator that satisfies (A2). It then follows that

V 0
T is the minimum asymptotic variance.

STEP 1: This part is inspired by a similar result by Gourieroux, Monfort, and

Trognon (1984). Let V 0
T be as defined in Theorem 3 and consider the difference

(∆0
T )−1Σ0

T (∆0
T )−1−V 0

T . We show that this difference is positive definite for any A(·, ξt),
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1 6 t 6 T, T > 1, in Theorem 1, by writing (∆0
T )−1Σ0

T (∆0
T )−1 − V 0

T = V 0
T (V 0

T )−1V 0
T −

V 0
T ∆0

T (∆0
T )−1− (∆0

T )−1∆0
T V 0

T + (∆0
T )−1Σ0

T (∆0
T )−1. Then we have (∆0

T )−1Σ0
T (∆0

T )−1−

V 0
T = [α(1 − α)]−1T−1

T∑
t=1

E[χtχ
′
t], where for every t, 1 6 t 6 T, T > 1, we let

χt ≡ [f 0
t (qα(Wt, θ0))V

0
T −α(1−α)a(qα(Wt, θ0), ξt)(∆

0
T )−1]∇θqα(Wt, θ0), and a(y, ξt) ≡

∂A(y, ξt)/∂y as previously. Hence, for any A(·, ξt), 1 6 t 6 T, T > 1, such that

a(·, ξt) > 0, a.s.−P on Q, the matrix (∆0
T )−1Σ0

T (∆0
T )−1−V 0

T is positive semidefinite.

STEP 2: We now show that, under (A1)-(A2), (A6)-(A7) and (A8)(i), this lower

bound V 0
T is attained by the M–estimator θ∗T whose objective function Ψ∗

T (θ) ≡

T−1
∑T

t=1 ϕ(Yt, qα(Wt, θ), ξ
∗
t ) is such that ϕ(Yt, qt, ξ

∗
t ) = [α − 1I(qt − Yt)][F

0
t (Yt) −

F 0
t (qt)], a.s. − P on R × Q × Et, for every 1 6 t 6 T, T > 1. Note that the shape

ξ∗t corresponds to the true conditional distribution F 0
t (·) which is stochastic and Wt-

measurable thereby satisfying (A3)(i). Moreover, F 0
t (·) is twice continuously differen-

tiable with bounded f 0
t (y) and |df0

t (y)/dy|, which satisfies (A3)(ii) and (A5). Since

F 0
t (·) is bounded by 1 the moment conditions (A8)(ii) hold. Hence, we can apply Theo-

rem 2 to show that, under (A1)-(A2), (A6)-(A7) and (A8)(i), θ∗T with A(·, ξ∗t ) = F 0
t (·),

is asymptotically distributed as
√

T (Σ0
T )−1/2∆0

T (θT − θ0)
d→ N (0, Id) with Σ0

T =

α(1 − α)∆0
T and ∆0

T = T−1
∑T

t=1 E{[f 0
t (qα(Wt, θ0))]

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
′}, so

(∆0
T )−1Σ0

T (∆0
T )−1 = V 0

T .

Proof of Theorem 4. To prove (i) and (iii), we start by showing that for any θ ∈

Θ\{θ0}, the function f ∗t (·, θ) in (7) is a probability density, for all t, 1 6 t 6 T, T > 1.

First, note that for any θ ∈ Θ\{θ0}, f ∗t (·, θ) is continuous and f ∗t (·, θ) > 0 on R.

Thus it suffices to show that
∫

R f ∗t (y, θ)dy = 1. Consider the change of variable

u ≡ λ(θ)F 0
t (y), where λ(θ)F 0

t (·) is strictly increasing in y since λ(θ) = Λ(θ − θ0) > 0

and f 0
t (·) is strictly positive (so du = λ(θ)f 0

t (y)dy). To simplify the notation, we let
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qt(θ) ≡ qα(Wt, θ). Noting that 1I(qt(θ)− y) = 1I[λ(θ)F 0
t (qt(θ))− u], we have∫

R
f ∗t (y, θ)dy =

∫ λ(θ)F 0
t (qt(θ))

0

α(1− α) exp{(1− α)[u− λ(θ)F 0
t (qt(θ))]}

1− exp[−(1− α)λ(θ)F 0
t (qt(θ))]

du

+

∫ λ(θ)

λ(θ)F 0
t (qt(θ))

α(1− α) exp{−α[u− λ(θ)F 0
t (qt(θ))]}

1− exp{−αλ(θ)[1− F 0
t (qt(θ))]}

du

= α + (1− α) = 1,

which shows that f ∗t (·, θ) is a probability density for any θ ∈ Θ\{θ0}. We now show

that this is also true for θ0 and that f ∗t (·, θ0) = f 0
t (·). For this, let Pt(θ) ≡ α(1 −

α)λ(θ) exp{λ(θ)[F 0
t (y)− F 0

t (qt(θ))][1I(qt(θ)− y)− α]} and Qt(θ) ≡ 1− exp{λ(θ)[1−

F 0
t (qt(θ)) − 1I(qt(θ) − y)][1I(qt(θ) − y) − α]}, so that f ∗t (y, θ) = f 0

t (y)Pt(θ)/Qt(θ).

By (A1)(ii), the functions Pt and Qt are at least twice continuously differentiable

on Θ a.s. − P ; thus for every (θ, θ0) ∈ Θ2 we can write their respective Taylor

developments of order two. Straightforward though lengthy computations show that,

for any function λ(θ) = Λ(θ − θ0) such that ∇θΛ(0) = 0 and ∆θθΛ(0) nonsingular,

we have Pt(θ0) = 0, D1Pt(θ0) = 0, D2Pt(θ0) = α(1 − α)D2λ(θ0), and Qt(θ0) = 0,

D1Qt(θ0) = 0, D2Qt(θ0) = α(1− α)D2λ(θ0). Hence

Pt(θ) = 1
2
α(1− α)D2λ(θ0)(θ − θ0)

2 + o(|θ − θ0|2), (12)

Qt(θ) = 1
2
α(1− α)D2λ(θ0)(θ − θ0)

2 + o(|θ − θ0|2). (13)

Given the nonsingularity of ∆θθΛ(0), an immediate consequence of l’Hôpital’s rule and

(12) − (13) is that limθ→θ0 Pt(θ)/Qt(θ) = 1. Hence by a.s. − P continuity of f ∗t (y, ·)

on Θ, we have, for any y ∈ R, f ∗t (y, θ0) = limθ→θ0 f ∗t (y, θ) = f 0
t (y). This shows that

f ∗t (·, θ) is a probability density for any θ ∈ Θ, and that f ∗t (·, θ0) = f 0
t (·), so that

f 0 ∈ P∗, as desired. It remains to be shown that this parametric model P∗ satisfies

the conditional moment restriction in (ii) for all θ ∈ Θ. This restriction is clearly

satisfied when θ = θ0 as f ∗t (·, θ0) = f 0
t (·) and [θ0, f

0
t (·)] satisfies (A2) by assumption.
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When θ 6= θ0, we have

Eθ[1I(qt(θ)− Yt)|Wt] =

∫ qt(θ)

−∞
f ∗t (y, θ)dy = α,

where we have again used the change of variable u ≡ λ(θ)F 0
t (y).

Proof of Theorem 5. We now consider the MLE θ̃
∗
T which maximizes the log-likelihood

LT (θ) ≡ T−1
∑T

t=1 ln f ∗t (Yt, θ).

STEP1: First, we establish the consistency of θ̃
∗
T by checking that conditions (i)-

(iv) of Theorem 2.1 in Newey and McFadden (1994) hold. Given (A1)(i) we know

that ln f ∗t (Yt, θ) 6= ln f ∗t (Yt, θ0) a.s.− P , whenever θ 6= θ0 (see Figure 1 for example);

this verifies the uniqueness condition (i) of Theorem 2.1. The compactness condition

(ii) of Theorem 2.1 follows by assumption. Using qt(θ) = qα(Wt, θ) we have

ln f ∗t (Yt, θ) = ln[α(1− α)f 0
t (Yt)] + ln λ(θ) + λ(θ)[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]

− ln
(
1− exp{λ(θ)[1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− Yt)− F 0

t (qt(θ))]}
)
,

showing that E[ln f ∗t (Yt, θ)] is continous on Θ and that E[supθ∈Θ | ln f ∗t (Yt, θ)|r+ε] < ∞

for all t, 1 6 t 6 T, T > 1, and ε > 0; this verifies condition (iii) of Theorem 2.1. We

show the uniform convergence condition (iv) of Theorem 2.1 by following the same

steps as in the proof of Theorem 3 in Komunjer (2005). To simplify the notation let

x(θ) ≡ [1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− Yt)− F 0
t (qt(θ))] and u(z) ≡ exp z

1− exp z
,

for θ ∈ Θ and z ∈ R−. Note that −1 < x(θ) < 0 and −λ(θ) < λ(θ)x(θ) < 0 on Θ

a.s.− P . We have

∇θ ln f ∗t (Yt, θ) = ∇θλ(θ)
λ(θ)

+∇θλ(θ)[F 0
t (Yt)− F 0

t (qt(θ))][1I(qt(θ)− Yt)− α]

− λ(θ)f 0
t (qt(θ))∇θqt(θ)[1I(qt(θ)− Yt)− α] + u(λ(θ)x(θ))∇θ(λ(θ)x(θ))

+ λ(θ)[F 0
t (Yt)− F 0

t (qt(θ))]δ(qt(θ)− Yt)∇θqt(θ) (14)
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where∇θ(λ(θ)x(θ)) = ∇θλ(θ)x(θ)+λ(θ)∇θx(θ), and∇θx(θ) = {f 0
t (qt(θ))[α−1I(qt(θ)−

Yt)] + δ(qt(θ) − Yt)[α − F 0
t (qt(θ))]}∇θqt(θ), given that [1I(·)]2 = 1I(·). Note that

u(z) = −1/z − 1/2 + o(1) in the neigborhood of 0, and that λ(θ)x(θ) = op(1) in

the neigborhood of θ0, so u(λ(θ)x(θ))∇θ(λ(θ)x(θ)) = −∇θλ(θ)
λ(θ)

− ∇θx(θ)
x(θ)

+ op(1) in the

neighborhood of θ0. In particular, combining the above results, we get

∇θ ln f ∗t (Yt, θ0) = −∇θqt(θ0)
{

f0
t (qt(θ0))[α−1I(qt(θ0)−Yt)]+δ(qt(θ0)−Yt)[α−F 0

t (qt(θ0))]

[1I(qt(θ0)−Yt)−α][1−1I(qt(θ0)−Yt)−F 0
t (qt(θ0))]

}
= − 1

α(1−α)
∇θqt(θ0)f

0
t (qt(θ0))[1I(qt(θ0)− Yt)− α], (15)

where the second equality uses x(θ0) = −α(1 − α) and F 0
t (qt(θ0)) = α. Using −1 <

x(θ) < 0 on Θ a.s.−P so that
∣∣∣∇θλ(θ)

λ(θ)
{1 + λ(θ)x(θ)u(λ(θ)x(θ))}

∣∣∣ 6 |x(θ)∇θλ(θ)|, we

then have

sup
θ∈Θ

|∇θ ln f ∗t (Yt, θ)| 6 2 sup
θ∈Θ

|∇θλ(θ)|+ sup
θ∈Θ

|λ(θ)|M0|∇θqt(θ)|+

+C1 sup
θ∈Θ

∣∣∣ f0
t (qt(θ))∇θqt(θ)

1−1I(qt(θ)−Yt)−F 0
t (qt(θ))

∣∣∣ , a.s.− P, (16)

where C1 ≡ supx∈[0,supθ∈Θ λ(θ)] | x
1−exp(−x)

| < ∞. We have supt>1 supθ∈Θ F 0
t (qt(θ)) ∈

(a, b), a > 0, b < 1, so C2 ≡ supt>1 supy∈R supθ∈Θ (|1− 1I(qt(θ)− y)− F 0
t (qt(θ))|−1)

< ∞, and the last term of the above inequality is bounded above by C1C2M0 supθ∈Θ

|∇θqt(θ)|. From (A8)(i) E[supθ∈Θ |∇θqt(θ)|] < ∞, so E[supθ∈Θ |∇θ ln f ∗t (Yt, θ)|] < ∞

for all t, 1 6 t 6 T, T > 1, which shows that equation (25) in Komunjer (2005) holds;

together with (A7) and E[supθ∈Θ | ln f ∗t (Yt, θ)|r+ε] < ∞ for all t, 1 6 t 6 T, T > 1,

this establishes condition (iv) of Theorem 2.1 and completes the proof of consistency.

STEP2: We now show that the MLE θ̃
∗
T is asymptotically normal by checking that

conditions (i)-(v) of Theorem 7.2 in Newey and McFadden (1994) applied to ∇θLT (θ)

hold. We first establish the asymptotic first order condition
√

T∇θLT (θ̃
∗
T )

p→ 0 by

following the same steps as in the proof of Lemma A1 in Komunjer (2005): for every
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j = 1, . . . , k, let G̃∗
T,j(h) be the right-derivative of L̃∗T,j(h) ≡ T−1

∑T
t=1 ln f ∗t (Yt, θ̃

∗
T +

hej), where {ej}k
j=1 is the standard basis of Rk, and h ∈ R is such that for all

j = 1, . . . , k, θ̃
∗
T + hej ∈ Θ. Since for every j = 1, . . . , k, L̃∗T,j(0) = LT (θ̂T ) so

that the functions h 7→ L̃∗T ,j(h) achieve their maximum at h = 0, we have, for ε >

0, G̃∗
T,j(ε) 6 G̃∗

T,j(0) 6 G̃∗
T,j(−ε), with G̃∗

T,j(ε) 6 0 and G̃∗
T,j(−ε) > 0. Therefore

|G̃∗
T,j(0)| 6 G̃∗

T,j(−ε) − G̃∗
T,j(ε). By taking the limit of this inequality as ε → 0, we

get |G̃∗
T,j(0)| 6 T−1

T∑
t=1

[1 + 2C1]
[∣∣∣∂λ(θ̃

∗
T )

∂θj

∣∣∣+ ∣∣∣λ(θ̃
∗
T )f 0

t (qt(θ̃
∗
T ))∂qt(θ̃

∗
T )

∂θj

∣∣∣] 1I{qt(θ̃
∗
T ) = Yt}.

Hence

P
(√

T |∇θLT (θ̃
∗
T )| > ε

)
6 P

(√
T max

16j6k
|G̃∗

T,j(0)| > ε

)
6 P

(
T∑

t=1

[∣∣∣∂λ(θ̃
∗
T )

∂θj

∣∣∣+ ∣∣∣λ(θ̃
∗
T )f 0

t (qt(θ̃
∗
T ))∂qt(θ̃

∗
T )

∂θj

∣∣∣] 1I{qt(θ̃
∗
T ) = Yt} > ε

√
T (1 + 2C1)

−1

)

That P (1I{qt(θ̃
∗
T ) = Yt} 6= 0) = 0 and E[

∣∣∣∂λ(θ̃
∗
T )

∂θj

∣∣∣+ ∣∣∣λ(θ̃
∗
T )f 0

t (qt(θ̃
∗
T ))∂qt(θ̃

∗
T )

∂θj

∣∣∣] is bounded

then ensure that limT→∞ P
(√

T |∇θLT (θ̃
∗
T )| > ε

)
= 0. Condition (i) of Theorem 7.2

follows from the correct specification of ft(·) (see (iii) in Theorem 4). By (A6), θ0

is an interior point of Θ so that condition (iii) of Theorem 7.2 holds. We now check

the differentiability of E[∇θLT (θ)] and the nonsingularity condition (ii) of Theorem

7.2. We have E[∇θLT (θ)] = T−1
∑T

t=1 E[∇θ ln f ∗t (Yt, θ)]; using (14) the latter is eas-

ily shown to be differentiable at any θ ∈ Θ̊. We now show that ∇θE[∇′
θLT (θ0)] =

T−1
∑T

t=1 E[∆θθ ln f ∗t (Yt, θ0)] and that the latter is nonsingular. We have du(z)/dz =
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u(z) + [u(z)]2, hence, for any t, 1 6 t 6 T, T > 1,

∆θθ ln f ∗t (Yt, θ)

= ∆θθλ(θ)
λ(θ)

− ∇θλ(θ)∇θλ(θ)′

[λ(θ)]2
+ ∆θθλ(θ)[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]

+ 2∇θλ(θ)∇θqt(θ)
′ {f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[F
0
t (Yt)− F 0

t (qt(θ))]
}

+ λ(θ)∇θqt(θ)∇θqt(θ)
′
{

df0
t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)]− 2f 0

t (qt(θ))δ(qt(θ)− Yt)

+[F 0
t (Yt)− F 0

t (qt(θ))]
dδ(qt(θ)−Yt)

dq

}
+ u(λ(θ)x(θ))∆θθ(λ(θ)x(θ))

+ λ(θ)∆θθqt(θ)
{
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)] + [F 0
t (Yt)− F 0

t (qt(θ))]δ(qt(θ)− Yt)
}

+
[
u(λ(θ)x(θ)) + (u(λ(θ)x(θ)))2] (∇θ(λ(θ)x(θ))) (∇θ(λ(θ)x(θ)))′ , (17)

where ∆θθ(λ(θ)x(θ)) = ∆θθλ(θ)x(θ) + 2∇θλ(θ)∇θx(θ)′ + λ(θ)∆θθx(θ) and

∆θθx(θ) =
{

df0
t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)]− 2f 0

t (qt(θ))δ(qt(θ)− Yt)

+ dδ(qt(θ)−Yt)
dq

[α− F 0
t (qt(θ))]

}
∇θqt(θ)∇θqt(θ)

′

+
{
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[α− F 0
t (qt(θ))]

}
∆θθqt(θ).

Now, note that u(z) + [u(z)]2 = 1/z2 − 1/12 + o(1) in the neighborhood of 0 so that

[u(λ(θ)x(θ)) + u(λ(θ)x(θ))2]∇θ(λ(θ)x(θ))∇θ(λ(θ)x(θ))′

= ∇θλ(θ)∇θλ(θ)′

[λ(θ)]2
+ 2∇θλ(θ)∇θx(θ)′

λ(θ)x(θ)

+∇θqt(θ)∇θqt(θ)
′{f 0

t (qt(θ))
[α−1I(qt(θ)−Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α−F 0
t (qt(θ))]

x(θ)
}2 + op(1), (18)

in the neighborhood of θ0. Similarly,

u(λ(θ)x(θ))∆θθ(λ(θ)x(θ))

= −∆θθλ(θ)
λ(θ)

− 1
2
∆θθλ(θ)x(θ)− 2∇θλ(θ)∇θx(θ)′

λ(θ)x(θ)

−∇θqt(θ)∇θqt(θ)
′
{

df0
t (qt(θ))

dq
[α−1I(qt(θ)−Yt)]

x(θ)
− 2

f0
t (qt(θ))δ(qt(θ)−Yt)

x(θ)
+ dδ(qt(θ)−Yt)

dq

[α−F 0
t (qt(θ))]

x(θ)

}
−∆θθqt(θ)

{
f 0

t (qt(θ))
[α−1I(qt(θ)−Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α−F 0
t (qt(θ))]

x(θ)

}
+ op(1), (19)
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in the neighborhood of θ0. Combining (17) with (18) and (19), we then get that, for

any t, 1 6 t 6 T, T > 1,

∆θθ ln f ∗t (Yt, θ)

= ∆θθλ(θ)
{
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

}
+∇θqt(θ)∇θqt(θ)

′
{

f 0
t (qt(θ))

[α−1I(qt(θ)−Yt)]
x(θ)

+ δ(qt(θ)− Yt)
[α−F 0

t (qt(θ))]

x(θ)

}2

−∇θqt(θ)∇θqt(θ)
′
{

df0
t (qt(θ))

dq
[α−1I(qt(θ)−Yt)]

x(θ)
− 2

f0
t (qt(θ))δ(qt(θ)−Yt)

x(θ)
+ dδ(qt(θ)−Yt)

dq

[α−F 0
t (qt(θ))]

x(θ)

}
−∆θθqt(θ)

{
f 0

t (qt(θ))
[α−1I(qt(θ)−Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α−F 0
t (qt(θ))]

x(θ)

}
+ op(1), (20)

in the neigborhood of θ0. Using α = F 0
t (qt(θ0)) and x(θ0) = −α(1 − α) we have

|∆θθ ln f ∗t (Yt, θ0)| 6 5
2
|∆θθλ(θ0)|+ |∇θqt(θ0)∇θqt(θ0)

′|( M2
0

[α(1−α)]2
+ M1

α(1−α)
)+ |∆θθqt(θ0)|×

M0

α(1−α)
+ op(1), with |∆θθλ(θ0)| < ∞. From (A8)(i) E[|∇θqt(θ0)∇θqt(θ0)

′|] < ∞ and

E[|∆θθqt(θ0)|] < ∞, which shows that the expectation of the right hand side of the

above inequality is finite; hence ∇θE[∇′
θ ln f ∗t (Yt, θ0)] = E[∆θθ ln f ∗t (Yt, θ0)] for any t,

1 6 t 6 T, T > 1 and so ∇θE[∇′
θLT (θ0)] = T−1

∑T
t=1 E[∆θθ ln f ∗t (Yt, θ0)] as desired.

Now consider E[∆θθ ln f ∗t (Yt, θ0)]; for any t, 1 6 t 6 T, T > 1, we have

E
(
∆θθλ(θ0)

{
[F 0

t (Yt)− F 0
t (qt(θ0))][1I(qt(θ0)− Yt)− α]− 1

2
x(θ0)

})
= ∆θθλ(θ0)

[
E
(
[F 0

t (Yt)− α][1I(qt(θ0)− Yt)− α]
)

+ 1
2
α(1− α)

]
= ∆θθλ(θ0)

[
−1

2
α(1− α) + 1

2
α(1− α)

]
= 0,

since

Et

(
[F 0

t (Yt)− α][1I(qt(θ0)− Yt)− α]
)

= (1− α)
qt(θ0)∫
−∞

[F 0
t (y)− α]f 0

t (y)dy − α
+∞∫

qt(θ0)

[F 0
t (y)− α]f 0

t (y)dy

= (1− α)
[

1
2
[F 0

t (y)− α]2
]qt(θ0)

−∞
− α

[
1
2
[F 0

t (y)− α]2
]+∞

qt(θ0)
= −1

2
α(1− α).
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In addition, α = F 0
t (qt(θ0)) and x(θ0) = −α(1− α) so

E

(
∇θqt(θ0)∇θqt(θ0)

′
{

f 0
t (qt(θ0))

[α−1I(qt(θ0)−Yt)]
x(θ0)

+ δ(qt(θ0)− Yt)
[α−F 0

t (qt(θ0))]

x(θ0)

}2
)

= E
(
∇θqt(θ0)∇θqt(θ0)

′Et

{
[f0

t (qt(θ0))]2[α−1I(qt(θ0)−Yt)]2

α2(1−α)2

})
= E

(
∇θqt(θ0)∇θqt(θ0)

′ [f0
t (qt(θ0))]2

α(1−α)

)
,

where the last equality uses Et ([1I(qt(θ0)− Yt)− α]2) = α(1−α), a.s.−P . Similarly,

E
(
∇θqt(θ0)∇θqt(θ0)

′
{

df0
t (qt(θ0))

dq
[α−1I(qt(θ0)−Yt)]

x(θ0)
− 2

f0
t (qt(θ0))δ(qt(θ0)−Yt)

x(θ0)
+ dδ(qt(θ0)−Yt)

dq

[α−F 0
t (qt(θ0))]

x(θ0)

})
= E

(
∇θqt(θ0)∇θqt(θ0)

′Et

{
df0

t (qt(θ0))

dq
[1I(qt(θ0)−Yt)−α]

α(1−α)
+ 2

f0
t (qt(θ0))δ(qt(θ0)−Yt)

α(1−α)

})
= 2E

(
∇θqt(θ0)∇θqt(θ0)

′ [f0
t (qt(θ0))]2

α(1−α)

)
,

where the last equality uses Et (1I(qt(θ0)− Yt)− α) = 0, a.s. − P and Et(δ(qt(θ0) −

Yt)) = f 0
t (qt(θ0)), a.s. − P . Finally, by the same reasoning E(∆θθqt(θ0){f 0

t (qt(θ0))×
[α−1I(qt(θ0)−Yt)]

x(θ0)
+ δ(qt(θ0) − Yt)

[α−F 0
t (qt(θ0))]

x(θ0)
}) = 0. Combining the above results then

yields, by (20), E[∆θθ ln f ∗t (Yt, θ0)] = −E(∇θqt(θ0)∇θqt(θ0)
′ [f0

t (qt(θ0))]2

α(1−α)
), for all t, 1 6

t 6 T, T > 1. So for any χ ∈ Rk, χ′∇θE[∇′
θLT (θ0)]χ = −T−1

∑T
t=1 E(|∇θqt(θ0)

′χ|2×
[f0

t (qt(θ0))]2

α(1−α)
) 6 0, with equality if and only if χ = 0. Hence ∇θE[∇′

θLT (θ0)] is negative

definite (therefore nonsingular). We now check condition (iv) of Theorem 7.2 by using

a CLT for α-mixing sequences (e.g. Theorem 5.20 in White, 2001, p.130). By (A7),

for any θ ∈ Θ̊, the sequence {∇θ ln f ∗t (Yt, θ)} is strong mixing (i.e. α-mixing) with α

of size −r/(r − 2), r > 2 (see, e.g., Theorem 3.49 in White, 2001, p.50). Moreover,

using (14) and (A2), E[∇θ ln f ∗t (Yt, θ0)] = 0 and using (A8)(i), E[|∇θ ln f ∗t (Yt, θ0)|r] 6
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{M0/[α(1− α)]}rE[supθ∈Θ |∇θqt(θ)|r] < ∞, for all t, 1 6 t 6 T, T > 1. Now,

Var

(
T−1

T∑
t=1

∇θ ln f ∗t (Yt, θ0)

)
= E

(
T−1

T∑
t=1

∇θ ln f ∗t (Yt, θ0)∇θ ln f ∗t (Yt, θ0)
′
)

= E

(
T−1

T∑
t=1

[f0
t (qt(θ0))]2[1I(qt(θ0)−Yt)−α]2

[α(1−α)]2
∇θqt(θ0)∇θqt(θ0)

′
)

= V 0
T

where the first equality uses Et (∇θ ln f ∗t (Yt, θ0)) = 0, a.s. − P , implied by (A2),

and the last equality uses Et ([1I(qt(θ0)− Yt)− α]2) = α(1 − α), a.s. − P . Applying

Theorem 5.20 in White (2001) we then have (V 0
T )−1/2

√
T∇θLT (θ0)

d→ N (0, Id) with

V 0
T as defined in Theorem 3. Finally, we check the stochastic equicontinuity condition

(v) of Theorem 7.2 by veryfing that all the assumptions in Theorem 7.3 in Newey

and McFadden (1994) hold. (The main reason for using Theorem 7.3 is that it does

not put any restrictions on the dependence structure of {(Yt, W
′
t)
′}.) For any t, 1 6

t 6 T, T > 1, let rt(θ) = |∇θ ln f ∗t (Yt, θ) − ∇θ ln f ∗t (Yt, θ0) − ∆θθ ln f ∗t (Yt, θ)
′(θ −

θ0)|/|θ− θ0|, for θ ∈ Θ̊. Using u(z) = −1/z − 1/2 + o(1) in the neigborhood of 0 and

λ(θ)x(θ) = op(|θ − θ0|) in the neigborhood of θ0, we have, from (14), (15) and (17),

rt(θ) 6 r
(1)
t (θ) + r

(2)
t (θ) + r

(3)
t (θ) + op(1), where

r
(1)
t (θ) =

∣∣∣[F 0
t (Yt)− F 0

t (qt(θ))][1I(qt(θ)− Yt)− α]− x(θ)
2

∣∣∣ |∇θλ(θ)−∆θθλ(θ)′(θ−θ0)|
|θ−θ0|

r
(2)
t (θ) =

∣∣∣f0
t (qt(θ))

2
[1I(qt(θ)− Yt)− α] + δ(qt(θ)− Yt)[

F 0
t (qt(θ))−2F 0

t (Yt)+α

2
]
∣∣∣ |λ(θ)∇θqt(θ)|

|θ−θ0|

r
(3)
t (θ) =

∣∣∣∇θx(θ)
x(θ)

− ∇θx(θ0)
x(θ0)

− ∆θθx(θ)′(θ−θ0)
x(θ)

+ ∇θx(θ)∇θx(θ)′(θ−θ0)
[x(θ)]2

∣∣∣ /|θ − θ0|.

With probability one, r
(1)
t (θ) 6 2|∇θλ(θ) − ∆θθλ(θ)′(θ − θ0)|/|θ − θ0| for any θ ∈

Θ̊. Given that λ(·) is twice continously differentiable on Rk, with probability one

r
(1)
t (θ) → 0 as θ → θ0 and there exists ε1 > 0 such that E(supθ∈Θ̊:|θ−θ0|<ε1

r
(1)
t (θ)) <
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∞. Now, note that |f 0
t (qt(θ))[1I(qt(θ)− Yt)− α]| 6 M0 for any θ ∈ Θ̊, so

r
(2)
t (θ) 6 1

2

{
M0 + δ(qt(θ)− Yt)[F

0
t (qt(θ))− 2F 0

t (Yt) + α]
}
|λ(θ)∇θqt(θ)|

|θ−θ0|

6 1
2

{
M0 + δ(qt(θ)− Yt)[F

0
t (qt(θ))− 2F 0

t (Yt) + α]
}
|∇θλ(θc)| · |∇θqt(θ)|

for some θc ≡ cθ0 + (1 − c)θ with c ∈ (0, 1). Hence, using the fact that ∇θλ(·) is

continuous on Rk, that∇θλ(θ0) = 0 and that δ(qt(θ0)−Yt)[F
0
t (qt(θ0))−2F 0

t (Yt)+α] =

0, with probability one r
(2)
t (θ) → 0 as θ → θ0. Moreover, for some θd ≡ dθ0 +(1−d)θ,

d ∈ (0, 1),

E
(
supθ∈Θ̊:|θ−θ0|<ε1

r
(2)
t (θ)

)
6E

(
sup

θ∈Θ̊:|θ−θ0|<ε1

{M0

2
+ Et(δ(qt(θ)− Yt)|F

0
t (qt(θ))

2
− F 0

t (Yt) + α
2
|)}|∇θλ(θc)||∇θqt(θ)|

)
6M0

2
supθ∈Θ̊:|θ−θ0|<ε1

|∇θλ(θc)|
[
E
(
supθ∈Θ̊:|θ−θ0|<ε1

|∇θqt(θ)|
)

+M0E
(
supθ∈Θ̊:|θ−θ0|<ε1

|∇θqt(θ)||∇θqt(θd)|
)]

< ∞,

where the last inequality uses the continuity of ∇θλ(·) on Rk, (A8)(i) and the Cauchy-

Schwarz inequality. Finally, let rx(θ) = [x(θ0)− x(θ)−∇θx(θ)′(θ0 − θ)] /|θ0 − θ| and

Rx(θ) = [∇θx(θ0)−∇θx(θ)−∆θθx(θ)′(θ0−θ)]/|θ0−θ| and note that with probability

one supθ∈Θ̊:|θ−θ0|<ε1
|rx(θ)| → 0 and supθ∈Θ̊:|θ−θ0|<ε1

|Rx(θ)| → 0 as θ → θ0. This

implies that with probability one r
(3)
t (θ) → 0 as θ → θ0. Moreover

E
(
supθ∈Θ̊:|θ−θ0|<ε1

r
(3)
t (θ)

)
6 E

(
supθ∈Θ̊:|θ−θ0|<ε1

[|rx(θ)|+ |Rx(θ)|]/|x(θ)|
)

6 E
(
supθ∈Θ̊:|θ−θ0|<ε1

[1/|x(θ)|]
(
supθ∈Θ̊:|θ−θ0|<ε1

|rx(θ)|+ supθ∈Θ̊:|θ−θ0|<ε1
|Rx(θ)|

))
< ∞

where the last inequality uses supt>1 supθ∈Θ F 0
t (qt(θ)) ∈ (a, b) with a > 0 and b < 1, so

C3 ≡ supt>1 supy∈R supθ∈Θ

(
|[1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− y)− F 0

t (qt(θ))]|−1
)

<
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∞. Combining previous results then gives that with probability one rt(θ) → 0 as

θ → θ0 and that E
(
supθ∈Θ̊:|θ−θ0|<ε1

rt(θ)
)

< ∞. It remains to be shown that for all

θ in a neighborhood of θ0 we have T−1
∑T

t=1 ∆θθ ln f ∗t (Yt, θ)
p→ ∇θE[∇′

θLT (θ)]. By

(A7), for any θ ∈ Θ̊, the sequence {∆θθ ln f ∗t (Yt, θ)} is strong mixing (i.e. α-mixing)

with α of size −r/(r − 2), r > 2 (see, e.g. Theorem 3.49 in White, 2001, p.50).

Now, given θ ∈ Θ̊, there exists θa = aθ0 + (1 − a)θ, a ∈ (0, 1), such that for any

η > 0, we have P (δ(qt(θ)−Yt)|α−F 0
t (qt(θ))| > η) 6 E(|α−F 0

t (qt(θ))|f 0
t (qt(θ)))/η 6

|θ− θ0|E(|∇θqt(θa)|f 0
t (qt(θa))f

0
t (qt(θ)))/η 6 |θ− θ0|M2

0 E[supθ∈Θ |∇θqt(θ)|]/η, so that

in a neighborhood of θ0, δ(qt(θ)−Yt) |α− F 0
t (qt(θ))| = op(1). Similarly, P ([dδ(qt(θ)−

Yt)/dq]|α − F 0
t (qt(θ))| > η) 6 E(|α − F 0

t (qt(θ))|df0
t (qt(θ))/dq)/η 6 |θ − θ0|M0M1×

E[supθ∈Θ |∇θqt(θ)|]/η, where the first inequality uses the fact that Et(dδ(qt(θ) −

Yt)/dq) = df0
t (qt(θ))/dq, a.s.−P . From (20) we have that for any t, 1 6 t 6 T, T > 1,

∆θθ ln f ∗t (Yt, θ)

= ∆θθλ(θ)
{
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

}
+ ∇θqt(θ)∇θqt(θ)′

[x(θ)]2

{(
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)]
)2

+
(
δ(qt(θ)− Yt)[α− F 0

t (qt(θ))]
)2

−x(θ)
df0

t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)] + x(θ)dδ(qt(θ)−Yt)

dq
[α− F 0

t (qt(θ))]
}

− ∆θθqt(θ)
x(θ)

{
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[α− F 0
t (qt(θ))]

}
+ op(1),

in a neighborhood of θ0, which then gives

∆θθ ln f ∗t (Yt, θ)

= ∆θθλ(θ)
{
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

}
+ ∇θqt(θ)∇θqt(θ)′

[x(θ)]2

{(
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)]
)2 − x(θ)

df0
t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)]

}
− ∆θθqt(θ)

x(θ)

{
f 0

t (qt(θ))[α− 1I(qt(θ)− Yt)]
}

+ op(1).

Hence, for a given ε > 0, there is a positive constant nr,ε such that |∆θθ ln f ∗t (Yt, θ)|r+ε 6
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nr,ε{|∆θθλ(θ)|r+ε(5/2)r+ε + |∇θqt(θ)∇θqt(θ)
′|r+εC

2(r+ε)
3 (M2

0 +M1)
r+ε + |∆θθqt(θ)|r+ε×

Cr+ε
3 M r+ε

0 } + op(1), in a neigborhood of θ0, and so using (A8)(i) and the fact that

|∆θθλ(θ)| < ∞ in a neighborhood of θ0, we have E[|∆θθ ln f ∗t (Yt, θ)|r+ε] < ∞. The

weak LLN then follows from Corollary 3.48 in White (2001). This completes the proof

of asymptotic normality of the MLE θ̃
∗
T .
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